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By using the triple-deck scaling of Stewartson (1969) and Messiter (1970) we show 
that small but relatively sudden surface geometry variations that produce only 
very weak static pressure variations can nevertheless produce strong, i.e. O( I) ,  
coupling between an externally imposed acoustic disturbance and a spatially growing 
Tollmien- Schlichting wave. The analysis provides a qualitative explanation of the 
Leehey & Shapiro (1979) boundary-layer receptivity measurements and is in good 
quantitative agreement with the Aizin & Polyakov (1979) experiment. It may also 
explain why small ‘trip wires ’ can promote early transition. 

1. Introduction 
It is now clear that transition to turbulence in boundary layers frequently begins 

with the excitation of Tollmien-Schlichting waves by very weak freestream disturb- 
ances and that the transition Reynolds number is strongly affected by the nature and 
strength of these disturbances. A number of investigators have attempted to study 
this phenomenon by minimizing the natural disturbances in their experiments and 
imposing controlled (i.e. known) disturbances of some particular type. Acoustic 
disturbances were found to be especially effective in this role (primarily because of 
their large spanwise coherence) and Shapiro (1977) (see also Leehey k Shapiro 1979) 
carried out a very interesting experiment in which a disturbance of this type was 
imposed on a flat plate boundary layer without producing any significant vibration 
of the plate. Shapiro’s Mach number was quite low and his imposed disturbance was 
a nearly plane wave propagating in the mean-flow direction, so that it acted, for 
practical purposes, like a uniform pulsation of the entire stream. 

He found (1) that the resulting Tollmien-Schlichting wave amplitude increased 
linearly with that of the imposed disturbance - indicating that the former was 
generated by a strictly linear process - and (2) that the maximum Tollmien-Schlich- 
ting wave amplitude at the lower branch of the neutral-stability curve was, in fact, 
nearly equal to that of the imposed disturbance; which is to say that the observed 
‘coupling coefficient ’ was very nearly equal to one. 

The effect of a uniformly pulsating stream on the flow over an injinitely thin flat 
plate was studied numerically by Murdock (1980) and analytically by Goldstein 
(1983a,b) and by Goldstein, Sockol & Sam (1983). They found that the resulting 
Tollmien-Schlichting waves were several orders of magnitude smaller at the lower 
branch of the neutral-stability curve than those measured by Shapiro (1977). 

Goldstein’s (1983a, b) analysis shows (1) that the Tollmien-Schlichting waves are 
generated near the leading edge, where non-parallel-flow effects become important, 
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FIGURE 1. Shapiro’s (1977) plate. 

and (2) that these waves then undergo considerable decay before reaching the 
neutral-stability point, where they can start to grow. The decay process is related 
to the reduction of the (effectively infinite) wavelength of the free-stream disturbance 
that must take place before i t  can turn into a very short wavelength Tollmien- 
Schlichting wave. Goldstein (1983a, 13) also finds that the coupling coefficient itself 
is quite weak in this case. 

However, Shapiro’s (1977) plate was certainly not infinitely thin, and he, in fact, 
detected weak but relatively rapid streamwise variations in static pressure, which 
presumably resulted from streamwise variations in plate thickness. The purpose of 
the present paper is to show that even the very small streamwise variations in surface 
geometry that cause such weak static pressure variations can produce a large coupling 
between Tollmien-Schlichting waves and the imposed disturbance when these 
variations are sufficiently rapid, i.e. when they occur on the scale of a Tollmien- 
Schlichting wavelength. The variations in surface geometry are then able to ‘scatter’ 
very long-wavelength acoustic disturbances into the much shorter-wavelength 
Tollmien-Schlichting waves. 

The required variation in surface geometry may have occurred a t  the junction of 
the ‘nose’ and ‘flat-plate’ regions of Shapiro’s (1977) plate, shown here as figure 1. 
But, since this point was upstream of the neutral-stability point in his experiment, 
the Tollmien-Schlichting waves generated a t  the former point would still have had 
to undergo a certain amount of decay before they reached the latter, as was the case 
for the infinitely thin flat plate studied by Murdock (1980), Goldstein (1983a,b) and 
Goldstein et al. (1983). However, the present mechanism produces strong-enough 
coupling and small-enough decay (< 10-l) to  account for Shapiro’s observed unit 
amplitude ratio a t  the neutral-stability point. Large leading-edge curvature would 
produce Tollmien-Schlichting waves that are negligably small because they would 
have to  undergo much more decay than those generated a t  the junction. 

I n  order to reduce the problem to its simplest terms we consider a two-dimensional 
incompressible flow over a body with a small region of relatively large surface 
curvature (such as Shapiro’s flat plate shown in figure 1).  The upstream mean flow 
is assumed to be uniform, and we suppose that the unsteadiness is due to a 
small-amplitude time-harmonic pulsation of that  flow. 

Since the mean boundary-layer flow, and consequently the Tollmien-Schlichting 
waves that ride on that flow, can only be defined mathematically in the infinite- 
Reynolds-number limit, we suppose that the length Reynolds number R is large and 
carry out the analysis as a systematic asymptotic expansion in inverse powers of this 
quantity. We suppose that the streamwise extent of the Iarge-curvature region is 
O(R-t) and that the mean flow is turned through an angle O(R-:) across this region. 
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The corresponding steady flow was studied by Stewartson (1970,1971), and was found 
to possess the well-known ‘ triple-deck’ structure of Stewartson (1969) and Messiter 
(1970). Stewartson showed that the resulting static-pressure variations were also 
O ( R 4 ) .  

The unsteady flow of the present analysis can be treated as a linear perturbation 
of Stewartson’s (1970, 1971) solution, and therefore also possesses a ‘ triple-deck’ 
structure. We suppose that the dimensionless frequency (i.e. Strouhal number) of the 
imposed disturbance is O(Rf) ,  corresponding to the Tollmien-Schlichting wave 
frequency at the lower branch of the neutral-stability curve (Smith 1979; Goldstein 
1983). Smith (1979) showed that Tollmien-Schlichting waves have a ‘ triple-deck’ 
structure at the lower branch of the neutral-stability curve in the infinite-Reynolds- 
number limit, and Goldstein (1983a,b) showed that they also have this structure 
everywhere upstream of this curve. It is therefore natural that these waves should 
appear in the present analysis. We show that they occur just downstream of the region 
of large curvature, which we refer to as the interaction region, and that their 
amplitude is of the same order as that of the imposed disturbance (i.e. the coupling 
coefficient is of order one), which is rather remarkable, since the disturbance to the 
mean flow (as measured, say, by the mean-pressure variations) is so small (O(R-4)). 

In 55 we explain how such small mean-flow variations are able to have such a large 
effect on the unsteady flow. We next show that the predicted static-pressure 
variations are quite compatible with measurements made by Shapiro (1977) during 
the course of his experiment. The theory is then compared with Goldstein’s (1983a, b)  
infinitely thin flat-plate analysis and we explain why the coupling is so much stronger 
in the present case. Finally, the predictions of the present theory are shown to be 
consistent with the Tollmien-Schlichting wave amplitudes observed by Shapiro 
(1977). 

Smith (1973) showed that Stewartson’s (1970) analysis also applies to the flow over 
small humps on otherwise flat walls. The present study therefore applies to this case, 
and may consequently provide an explanation of how very small trip wires, and 
perhaps roughness elements, promote early transition. 

Aizin & Polyakov (1979) conducted a relevant experiment wherein the Tollmien- 
Schlichting wave was generated by an upstream-propagating acoustic wave interacting 
with a thin Mylar strip. In  $5.3 we show that the present theory is in excellent 
quantitative agreement with their data. 

Section 5.4 explains how the theory can be applied to any type of imposed 
disturbance whose spatial scale is large compared with the Tollmien-Schlichting 
wavelength. Finally, 55.5 shows that the results of the present study remain valid 
over the entire range of unstable frequencies rather than over the restricted range 
near the lower branch of the neutral curve implied by the original scaling. 

Nishioka & Morkovin (1985) recently imposed a very small-scale unsteady pressure 
gradient directly on a flat-plate boundary layer, so that the imposed disturbance 
and Tollmien-Schlichting wavelengths were compatible in their case. Their paper 
contains a qualitative description of the coupling process and provides a number of 
useful references to other experiments related to the present work. 

2. Formulation 
In order to fix ideas, we consider a two-dimensional incompressible flow of density 

p and kinetic viscosity v over a relatively thin two-dimensional body having a small 
region of large surface curvature K * ,  as shown schematically in figure 2. The net 
turning of the flow across this region is assumed to be small in a sense to be prescribed 
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more precisely below. The upstream motion consists of a uniform flow with velocity 
U ,  plus a small harmonic perturbation of frequency w and constant amplitude 
u, -% U,, so that the unsteady motion can be treated as a linear perturbation of the 
steady flow corresponding to U,. 

We introduce a Cartesian coordinate system {x*, y*}, with x* tangent to the body 
surface just upstream of the large-curvature region as indicated in figure 2. The steady 
velocity {Uo, V,} and pressure p0 are assumed to be normalized by U ,  and puZ, 
respectively, while the unsteady velocity perturbation {u, v} and pressure perturbation 
p are assumed to be normalized by u, and pu, U ,  respectively. 

As indicated in $1, the Reynolds number R = U ,  1/v based on the distance 1 
between the leading edge and the region of large curvature is assumed to be large, 
and the net turning angle a across this region (see figure 2) and its curvature K* are 
assumed to be O(e2) and O(1-l e-l) respectively, where 

e~ Rd. (2.1) 

Then the viscous effects will, to lowest order, be confined to a narrow boundary 
layer of thickness e4 on the surface of the body, and the flow in the vicinity of the 
large-curvature region will be unseparated and have the ' triple-deck ' structure of 
Stewartson (1969) and Messiter (1970), as indicated in figure 3. In fact, Stewartson 
(1970) has already analysed the steady flow in this region, and we treat the unsteady 
flow as a small perturbation about his solution. The latter flow bears some 
resemblance to the Brown & Daniels (1975) solution for unsteady trailing-edge flow, 
but differs from it in a number of important respects (e.g. the boundary conditions 
are different). The present work is also unique in combining such an unsteady solution 
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with classical boundary-layer stability theory and Stewartson's (1970) steady 
analysis for a change in wall slope. The work of Hall & Smith (1982) is also relevant 
to the present study. 

Following Stewartson (1970), we introduce the scaled coordinates 

X* Y* x = - ,  y = -  
1e3 1 ~ 4  * 

Then the large-curvature portion of the body surface can be described by an equation 
of the form y = ehF(X), (2.3) 

where P(X)-+O, -aoX as X + - ~ O ,  +a, 

the scaled turning angle 
a, = a /h2  

is assumed to be 0 ( 1 )  as E + O ,  and h is a parameter introduced for later convenience. 

2.1. The steadyjhw 
The relevant portions of Stewartson's (1970) analysis are summarized in this 
subsection. He showed that the flow in the main deck, where y = 0(1), behaves like 

U, + UB(y) +  KC, c U ~ ( Y )  ( - X)t as X - t  - 00, (2.5) 

where E is a constant, UB(y) is the boundary-layer velocity profile just upstream of 
the 'triple deck ' and the prime denotes differentiation with respect to the indicated 
argument. Since the body is assumed to be thin, we can take U, to be the Blasius 
profile and assume that UB -t 1 as y -t 00. 

Stewartson (1970) showed that the steady flow within the main deck itself has the 
structure 

uO = uB(Y)+€A(x)u~(Y)+0(E2), (2.6) 

V, = - ~ ~ A ' ( x ) u B ( ~ )  + 0 ( € 3 ) ,  (2.7) 

where A and P are related, via the upper-deck solution, by the Cauchy integral 

and the slash indicates that the Cauchy principal value of the integral is to be taken. 
The steady flow in the lower deck, where 

Y 3 y / s  

u, = € U ( X ,  Y)+0(€2) ,  
v, = €3V(X, Y ) + O ( P ) ,  
p, = €2P(X) +0(€8), 

is O( l), has the structure 
(2.10) 

(2.11) 

where the scaled variables U ,  Vand Pare determined by the boundary-layer equations 

uu,+ VUY = - p ' ( X ) +  uyy, 

u,+ vy = 0, 

(2.12) 

(2.13) 
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subject to the boundary conditions 

U =  V = O ,  Y = h F ( X )  for - c o < X < c o ,  

U-thY asX-t-cu, 

U+A[ Y+A(X)] as Y+ +a, 

where A = U&(O) 

is equal to  0.3321.. . for the Blasius boundary layer. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

2.2. The unsteady flow 
We suppose that the time t has been normalized by 1/U,  and put 

x = x*/1.  (2.18) 

Then the unsteady flow is governed by the linearized Navier-Stokes equations 

ut+ Uoux+uUox+&-4(VUo,+ &u,) = - p x + u y y + ~ * U x x ’  (2.19) 

Vt + u, vx + u vox + &-4(w V,, + v,v,) = - “-4py + v,, + &8VX2, (2.20) 

ux+€-4vy = 0. (2.21) 

Since the problem is linear, the entire unsteady flow will have harmonic time 
dependence, and we can put 

(2.22) 1 W X ,  Y L  

v“@, Y), 

m? Y L  

= e-iSt 

= e-iSt 

= e-iSt 

where s = w l / U ,  

is the Strouhal number and, since the body is assumed to  be thin, 

C + l  asy+co,  (2.23) 

Upstream of the triple deck, where the mean flow changes on the scale of x, the 
to the lowest approximation. 

unsteady flow in the boundary layer is given by the Stokes solution 

I ii = 1 -exp [its; y], 

@ = iSx. 
(2.24) 

Our interest here is in the relatively high-frequency case, where w is of the order 
of the TollmienSchlichting wave frequency at and upstream of the lower branch of 
the neutral-stability curve. The analyses of Goldstein (1983a,b) and Smith (1973) 
show that S must then be O ( E - ~ ) ,  so that 

so = &2S (2.25) 

will be O(1). The Stokes-layer thickness will then be the same as that of the lower 
deck, and (2.24) can be written as 

ji = i€S,X, (2.26) 

\ ,for y = O(1) 
1 -ei‘sgY for Y = @ I ) .  

(2.27) 
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The abrupt streamwise variations in the mean flow will modify this solution within 
the triple deck, and in the main deck the unsteady solution will be of the form 

(2.28) 

Substituting these via (2.22) into the linearized Navier-Stokes equations, using (2.6) 
and (2.7) and equating to zero the coefficients of E - ~  yields 

UB.ii,X + 47, u;3 = 0, 
cox = -Goby, 

$,, = 0. 

(2.29) 
(2.30) 
(2.31) 

Hence, using (2.23) and (2.27) and the fact that Ug+O as y + a ,  we find that 

4, = 1 +a(X)U&(y) ,  (2.32) 
v", = -a'(X)U,(y), (2.33) 

90 = P,(XL (2.34) 

where a(X)+O a s X + - m ,  (2.35) 

and it follows from (2.26) that? 

p,(X)-tiS,X as X+--oo. (2.36) 

In the upper deck, where 
fj = €y 

is 0(1) ,  (2.23) implies that the solution will be of the form 

.ii = 1 +€?Il@,@)+..., 
v" = €G1(X,g)+ ..., 

p" = €$l(X,g)+.. . .  

(2.37) 

(2.38) 

Substituting this into (2.19) and (2.20) via (2.22) and using (2.25) and the fact that 
(U,,  V,) = (1,O) + O(e)  in the upper deck, we find that jil - is, X and dl are conjugate 
harmonic functions (i.e. the real and imaginary parts of an analytic function of the 
complex variable X+ 1/ - 1 g).  Matching with the main-deck solutions (2.32) to (2.34) 
shows that 

G1(X, 0) = -a ' (X)  and $l(X, 0) = p o ( X ) .  
It follows that 

Finally, the solution in the lower deck is of the form 

1 4 = u,(X,  Y ) + O ( € ) ,  
v" = A,(x, Y )  + 0(€3), 
9 = € p o ( X ) + 0 ( € 2 ) .  

(2.39) 

(2.40) 

t Complete matching with the upstream solution may require that we introduce an unsteady 
foredeck such aa that used by Brown & Daniels (1975) for the unsteady trailing-edge problem. But 
it  turns out that we can obtain the solutions to the required degree of accuracy without actually 
doing this. 
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Substituting these into (2.19) and (2.20) via (2.22), using (2.11) and (2.25) and 
equating to zero coefficients of we find that uo and vo satisfy the linearized 
unsteady boundary-layer equations 

(2.41) 

uox = - B o y .  (2.42) 

-iso uo + Uuox + uo U ,  + vo U ,  + Vuoy = - p i  + uoyy, 

At the wall uo and vo satisfy the no-slip boundary condition 

uo = wo = 0 for Y = h F ( X ) ,  (2.43) 

and matching with (2.27) and (2.32) shows that 
a 1  

u 0 + 1 -eirSiY as X - t -  00 (2.44) 

and uo+l++Aa(X) as Y+m, (2.45) 

where h is defined by (2.17). 
This completes the formulation of the problem. The entire unsteady solution will 

be known once the solution of (2.41) and (2.42) subject to the conditions (2.39) and 
(2.43) to (2.45) has been obtained. But this requires that the solution of the 
corresponding steady problem (2.12)-(2.16) be found, which has only been done 
numerically (Ragab & Nayfeh 1980; Sykes 1978; Napolitans, Werle & Davis 1979). 

Fortunately, much ofthe physics of the receptivity phenomenon is best understood 
by considering the linearized solution corresponding to moderately large curvature, 
i.e. to h 4 1 in (2.3). This is done in 93. 

3. The linearized solution 
We begin by considering the steady problem (2.12)-(2.16). Its solution has already 

been obtained by Stewartson (1970,1971). For convenience we summarize his results 
in the present notation. 

3.1. The steady solution 
The linearized solution for h -4 1 is given by (Stewartson 1970, 1971) 

where the Fourier transforms with respect to X, say 0, v, 
perturbation quantities U(l) ,  V ( l ) ,  A(') and Q(l)  respectively, e.g. 

and Q ,  of the 

(3.5) 
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T= -(U"-Q)-ikDY, 
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(3.9) 
1 -  
h 
V(0) = 0, (3.10) 

where Fdenotes the Fourier transform of F (in the notation (3.5)), kfiO indicates 
that a small positive/negative imaginary quantity (which is ultimately put equal to 
zero) has been added to k, and the branch cuts of (k+iO)i are to be taken in the 
lower/upper half-planes. 

The solution to (3.6)-(3.10) is given by 

& = -  - AF(k) (ikh)i 
D( k) 3fr(+) ' 

1 ih(ikh)i 
3 y(k) 3tr(g) ' 

D(k) -- 

k3 
[(k+iO) (k-io)]:' 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

and r denotes the gamma function. 

3.2. The unsteady solution 
As already indicated, the analysis in this section is similar to the linearized study 
of Brown & Daniels (1975). Corresponding to the expansion (3.1)-(3.4) of the steady 
solution, the unsteady solution of (2.41)-(2.45) and (2.39) can be expressed as 

(3.15) 
(3.16) 
(3.17) 
(3.18) 

where terms O(h2) are again neglected. Substituting these together with (3.1) and (3.2) 
into (2.41 k(2.45) and equating to zero like powers of h yields, upon transferring (2.43) 
to Y = O ,  

(3.19) 
8 1  

- i i sou( l )+h(Yu~+v( l ) )+p( l ) -u~l  = - (1  -eipsiy) U$l)+itaeiidY k'(l), 

Equation (2.39) shows that 

(3.20) 

(3.21) 
(3.22) 
(3.23) 

(3.24) 

Differentiating (3.19) with respect to Y, using (3.20), and noting that U(l) and V1) 

(3.25) 

also satisfy this equation, we obtain 
8 1  

isouv) - hyuyy + uvby = (1 - ei*siY) upy +is, ei'sty ~(1). 
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U, V, c i  and q, of the perturbation variables d l ) ,  dl), a(’) and q(l)  respectively, e.g. 
It follows from (3.21)-(3.25) that the Fourier transforms with respect to X, say 

(3.26) 

(3.27) 

U(O) = i%$,F, (3.28) 
V(0)  = 0, (3.29) 

#+ha asY+oo, (3.30) 
q = iyci, (3.31) 

1 “ o  
U(Y) = 1 u(’)(X, Y) e-ikX dX, 

(2X)P -w 
3 1  .a :y -, iifL’”+i(S0-kkAY)ii’ = ik(i-elPSo ) U +iSoeiPsfY V, satisfy 

where y is defined by (3.14). Hence it follows from (3.10) and (3.19) that 

cff (0) = iya + iL$ F. (3.32) 
Putting 

(3.33) 

and using (3.9) to eliminate Ton the right-hand side of (3.27), we find that El satisfies 

fi“ + i(So- khY) iil = - ikG( Y), (3.34) 

(3.35) 
where we have put G(Y) = e i ’s iy[ (2~+1)  1 1  F+GQ] s -  

Since (3.34) possesses homogeneous solutions whose first derivatives are Ai (5) and 
Bi (C), where 

(3.37) 

it follows that the solution to (3.34) that remains bounded as Y + is given by 

(ikh)f IT [ Bi (5) J Ai ([) G( 8) d8-  Ai (5) Joy Bi ([) G( 8) dF] + C(k) Ai (5). -‘ 
l -  h m 

(3.38) 

Substituting this into (3.33), inserting the result into the boundary conditions 
(3.28), (3.30) and (3.32), integrating by parts to simplify the double integral, using 
(3.7)-(3.10) to eliminate o(O), o(m) and r ( O ) ,  and solving for a, we fmd that 

where (3.40) 

(3.41) 

and Gi and Gi‘ denote the combinations of Airy functions and Airy-function integrals 
defined on p. 448 of Abramowitz t Stegun (1964). 
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It follows from (3.32) and (3.33) that C ( k )  is now given by 

1 k - So -, [ y (a - S, A )  - U (0) - h Bi’ (6) JOm Ai (6) G( Y) dY] . (3.42) 
(ikA)f Ai‘ (so) C(k) = 

Substituting (3.11), (3.12) and (3.35) into (3.39), changing the variable of integra- 
tion, and deforming the contour yields 

(3.44) 

and the integral can be carried out along the real axis. This essentially completes the 
solution to the problem. Physical quantities can be found by inserting (3.42) and 
(3.43) into (3.33) and (3.38), and inverting the Fourier transforms of the type (3.26). 
We are, however, only interested in the amplitude of the Tollmien-Schlichting wave 
produced by the interaction, and not in the complete solution. Fortunately the former 
is much easier to calculate than the latter. 

4. Coupling coefficient - the receptivity problem 
Bogdanova & Ryzhov (1983) analysed the generation of instabilities by pistons in 

plane Poiseuille flow, and Goldstein (1984) analysed the generation of instabilities by 
external disturbances in flows separating from smooth surfaces. Both of these are 
related to the present work (and to Goldstein 1983a) in that they involve viscid-inviscid 
interactions. The first of these, being concerned with input disturbances that are 
already of the appropriate Tollmien-Schlichting wavelength scale, is more closely 
related to the Nishioka & Morkovin (1985) study (referred to in § 1) than to the present 
analysis or to Shapiro’s (1977) experiment. 

It follows from (3.17) and (3.26) that 

Our interest is in the region downstream of the interaction zone (i.e. the region of 
large surface curvature) where X > 0. Then the integration contour can be closed in 
the upper half-plane. 

Equation (3.43) shows that the integrand possesses poles a t  points where 

A = 0. (4.2) 

But it follows from (3.14), (3.36) and (3.41) that (4.2) is just the lowest-order 
approximation to the characteristic equation obtained from the classical large- 
Reynolds-number-small-wavenumber asymptotic solution to the On4ommerfeld 
equation for the region near the lower branch of the neutral-stability curve (Lin 1946, 
p. 294 of Appendix and the equation immediately following (12.5)t; Reid 1965, 
pp. 279-282). Its roots are the eigenvalues of the Om-Sommerfeld equation corre- 
sponding to the Tollmien-Schlichting waves. This is to be expected since, as was 

t There are some minor typographical errors in equation (7) of Lin’s Appendix, and a prime is 
missing in his equation (12.5). 
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shown by Smith (1979) and Goldstein (1983), the Tollmien-Schlichting waves exhibit 
the same triple-deck structure as the present solution in the region upstream of the 
lower branch of the neutral-stability curve. 

We suppose that the interaction zone lies upstream of this curve, so that the 
TollmienSchlichting waves initially decay. (Goldstein (1983 a, b) showed that (4.2) 
is the correct characteristic equation for these waves everywhere in this upstream 
region.) Then the roots of (4.2) must lie in the first quadrant of the k-plane, and we 

(4.3) 
can put 

y = k2. 

We are only interested in the root corresponding to the Tollmien-Schlichting wave 
that ultimately exhibits spatial growth in the downstream region (i.e. its lowest-order 
root, see Goldstein 1983a,b). The contribution am to  (4.1) from the corresponding 
pole is just equal t o  2xi times the residue of the integrand a t  this point, which we 
denote by k = K (Goldstein 1981). Then, denoting the corresponding value of 5, by 
7 so that 

and 

we find from (3.43) that  
uT.(X) = Ah eiKX F(K) A(S,/Ai), 

(4.5) 

where we have put 

A’ denotes the derivative of (4.5) with respect to 7, and it  follows from (3.13), (4.3) 
and (4.4) that 

Equations (2.22) and (2.32) therefore imply that the streamwise velocity fluctuation 
produced by the Tollmien-Schlichting wave is given by 

in the main part of the boundary layer. Similarly (2.38), (2.40), (3.15), (3.26), (3.33), 
(3.38) and (3.42) imply that the streamwise velocity fluctuation in the lower deck is 
given by ( i K A ) f y + l  I Ai(5)dC 

jIW Ai (5) d5 

uTs = A~F(K) A - eiqxPst)A for Y = O(1). (4.10) (3 
At larger values of the scaled frequency parameter S,,/Ag the root K of A = 0 crosses 

into the lower half-plane, and the Tollmien-Schlichting wave then begins to grow, 
but, as explained by Goldstein (1981) on the basis of causality arguments and more 
recently by Bogdanova & Ryzhov (1983) from a somewhat different point of view, 
the Fourier-inversion contour in (4.1) must then be deformed to lie below the 
corresponding pole in the integrand. The net result is that  the preceding formulas 
(e.g. (4.9) and (4.10)) apply without modification. 
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By using equations (10.4.9), (10.4.42) and (10.4.43) on pp. 446 and 448 of 
Abramowitz & Stegun (1964) to eliminate Gi and Bi, (3.40) can be written as 

-e!iKAi((r+~)e:'")jyAi(s)ds}.  (4.11) 

It therefore follows from the asymptotic expansions of the Airy functions that 

(4.12) 

and that the lowest-order root of (4.2) (with d defined in (3.41)) behaves like 

Hence 

r]+- e+-- ... as so+ co. Y h 35, 

Inserting these results into (4.7) and using (3.44) and (4.8)' we find that 

(4.13) 

(4.14) 

Substituting this along with (4.4) and (4.13) into (4.9) yields 

uTs + -hi (+x)t hF( (AS& ei((nso):x-st) UL(y) as So + 00. (4.15) 

5. Discussion of results 
In the absence of the large-curvature region, the imposed disturbance would 

produce only a Stokes shear flow, which is independent of both the mean boundary 
layer and the streamwise coordinate to lowest order. The Stokes layer (across which 
this flow adjusts to the free stream) is very thin - of the order of the lower-deck 
thickness s5-when the disturbance frequency is of the order of the Tollmien- 
Schlichting wave frequency for the lower branch of the neutral-stability curve, i.e. 
when the Strouhal number is O ( P ) .  The Stokes solution results from the balance of 
the O ( P )  pressure, viscous and temporal acceleration terms in the linearized 
momentum equation - the convective acceleration terms being negligible to this 
order. But the large curvature in the interaction region induces a cross-stream 
mean-velocity component V,, which is O(e3) in the lower deck. This in turn introduces 
a convective acceleration term c4 b'ou/ay = O ( P )  in the lower-deck linearized 
streamwise momentum equation, which is of the same order as the pressure, temporal 
acceleration and viscous terms. Then since V, depends on X = x / 2 ,  this causes the 
initial Stokes-type solution to exhibit an X-dependence that is of the same scale, 
namely O(e31), as the TollmienSchlichting wavelength at the lower branch of the 
neutral-stability curve. In  this way the very small (O(ee)) mean-flow variation across 
the interaction region is able to 'scatter' the imposed disturbance into a Tollmien- 
Schlichting wave that has roughly the same amplitude as that disturbance. 

Most of Shapiro's (1977) experiments were carried out at a frequency parameter 
wv/UZ, of 0.56 x so that his theoretical flat-plate neutral-stability point corres- 
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FIQURE 4. Static-pressure distribution as a function of R,’ measured by Shapiro. 

ponded to a displacement-thickness Reynolds number R,* (in Shapiro’s notation) of 
roughly 9.5 x lo2 (according to  Shapiro). Our parameters s and So, which are equal 
to (R,*/1.72)-: and (R,*/1.72): w v / U L  respectively, are therefore about 0.2 and 0.73 
respectively at his neutral-stability point. The ‘nose’ region of his plate appears to 
end at  about 0.21 cm from the leading edge. This corresponds to  an R,* of 363 for 
the experiments run a t  29 m/s, so that e z 0.26 and So z 0.17 in this case. 

Figure 4 is a reproduction of Shapiro’s (1977) measured static-pressure distribution 
plotted as a function of R,. (his figure 25). The only difference is that  we have put 
a slightly different curve through his data points in the vicinity of the break point 
(i.e. the end of the nose region). Since AR,* z 0.86 AX/€ there, 2 AX will equal 1.56 
when 2 AR,. = 5.2. The magnitude of the negative peak lying below this width is 
roughly APo z 1.45 x lop2. (Notice that Shapiro’s normalized pressure levels are twice 
ours, owing to differences in normalization.) This corresponds to  a A P  = ApO/sz of 
about 0.21. Inspection of Stewartson’s (1971) figure 2 (a)  reveals that  his theoretical 
negative static-pressure distribution peaks a t  almost exactly that value and that the 
peak has a width 2 AX of about 1.5 where his curve crosses the real axis. This shows 
that Shapiro’s static-pressure measurements are compatible with the predictions of 
the present theory when a. = a/hs2,  the scaled turning across the interaction region, 
is equal to unity. 

The most important results of the present study are equations (4.9) and (4.10) for 
the TollmienSchlichting velocity fluctuations generated downstream of the interac- 
tion region. The factor AhFA is a measure of the amplitude of the Tollmien-Schlichting 
wave to that of the imposed disturbance. Following Tam (197 l ) ,  we refer to i t  as the 
‘coupling coefficient ’. 

The factor A(Ss2/Af)  is independent of the geometry of the interaction region and 
depends on the upstream boundary layer only through the scaled skin friction just 
upstream of the interaction region. A is plotted against Ss2/A: in figure 5. Its  
asymptotic limit (4.14) is indicated by the dashed line. The figure shows that the 
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FIGURE 5. Real and imaginary parts of A .  

in-phase component (real part) is generally small compared with the out-of-phase 
component, which monotonically increases to its limiting value of about unity. Thus 
A merely produces a net phase shift of -?p between the free-stream disturbance and 
the Tollmien-Schlichting wave, at  sufficiently large values of the scaled frequency 
parameter S,/ht. 

The interaction-region geometry is accounted for through the factor hp ,  which, for 
a given geometry, depends only on the complex Tollmien-Schlichting wavenumber K .  

In order to get some idea about the magnitude of F(K), we evaluate it for the dis- 
continuous slope change in which 

F = 0, -a,X for X < 0, X > 0. 

Inserting this into (3.26) yields 

hF(k) = h a 0  

(2X)i (k-io)Z ’ 
so that (4.4) implies that 

5.1. Some rough order-of-magnitude estimates and comparison 
with the injinitely thin jlat plate 

Equations (4.9) and (4.10) have to be corrected for mean-flow divergence effects when 
the distance X downstream of the interaction region becomes sufficiently large. This 
can be done (to a first approximation) by replacing the factor eiKX by (Smith 1979) 

exp (i Jox K dX) = exp ($ s,” K (2) dz) , 

where the complex wavenumber K is now to be evaluated at the local conditions. The 
absolute value of this factor determines the order of magnitude of the Tollmien- 
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Schlichting wave velocity fluctuation uTs far (in terms of X) downstream from the 
interaction zone, since its coefficients are 0(1) in (4.9) and (4.10). 

On the other hand, the analysis of Goldstein (1983a,b) and Goldstein et al. (1983) 
for the infinitely thin flat plate shows that the order of magnitude of uTs is, in that 
case, determined by the factor 

where (Goldstein et al. 1983) 
-27 X 1.3842 

and we use the notation of the present paper. Notice that Goldstein’s (1983a, b) E and 
K are respectively L$ and ti’,$ (evaluated at s = 0) times the present E and K .  Thus 
the leading-edge Tollmien-Schlichting waves (on an infinitely thin flat plate) are 
weaker than those generated through the present mechanism by a factor of order 

where is a measure of the strength of the coupling between the external 
disturbance and the Tollmien-Schlichting wave, i.e. i t  gives the order of magnitude 
of the coupling coefficient, and 

/exP(fJ:l KdX)J 

is a measure of the damping that the wave undergoes before reaching the position 
x = 0, where the break point is located in the present study. 

Assuming that the frequency parameter ov/ UZ, is equal to Shapiro’s (1977) value 
of 0.56 x and using the estimate of the distance I to his break point given above, 
we infer from results given in Goldstein (1983a,b) that the damping factorst 

should be roughly 0.75 x lo-’ and 3 x respectively at  Shapiro’s neutral-stability 
point. 

Thus it would appear that the present mechanism produces Tollmien-Schlichting 
waves that have about & of the amplitude of the imposed disturbance at  the 
‘theoretical ’ neutral-stability point, while the edge-generated waves (on an infinitely 
thin flat plate) are only about of the amplitude of that disturbance, which agrees 
roughly with Murdock’s (1980) estimate. But the weak adverse pressure gradient 
between the break point and the neutral-stability point in Shapiro’s experiment (see 
figure 4) must have reduced the Tollmien-Schlichting wave damping that actually 
occurred there. Since this gradient is 0(8), as can be seen from figure 4 and our 
estimate of E ,  the resulting reduction in ImK could also be O(e3) ,  which would tend 
to make the damping factor 

much closer to unity than to our previous estimate of 10-l. 

2, x (0.73)3/(0.332)’ % 6 at the neutral-stability point and 2, x 0.832 at the break point. 
t Goldstein’s (1983a,b) 2, corresponds to the parameter & / A e  used in the present paper, so that 
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This also implies that there was an upstream shift in the location of the 
neutral-stability curve in the Shapiro experiment (from its theoretical flat-plate 
value) which was, in fact, already suggested by Shapiro (1977). This is also supported 
by his data (see his figure 24), which show spatial growth of the measured instability 
wave in the region upstream of the theoretical neutral-stability curve. 

5.2. The numerical coeflcient of the damping factor 
We now show that the numerical factor multiplying 

is, in fact, not too different from unity. The scaled skin-friction parameter A is equal 
to 0.332 ... for a Blasius boundary layer, and we have inferred that X, x 0.17 in 
Shapiro's (1977) 29 m/s experiment. Then it follows from figure 2 of Goldsteint 
(1983~)  and figure 5 of the present paper that 7 x 1.44exp (-2.79i) and 
I A(S,/At) I x 0.36. Using (5.2) for a discontinuous slope change across the interaction 
region to obtain an estimate of hF, we find 

hF x 26.7?m0 e-0.52i. 

We have already indicated that Shapiro (1977) measured the ratio of the maximum 
streamwise Tollmien-Schlichting wave velocity to that of the imposed disturbance, 
say I uTS I m a x ,  at the theoretical location of the lower branch of the neutral-stability 
curve in his experiment. Since 

goes nearly monotonically to h as Y+ 00 and, since the maximum value of U&) is 
also A,  it follows from (4.9) and (4.10) that 

Then in view of our previous argument that the last factor should be about unity 
in Shapiro's experiment, we infer that the ratio of the maximum neutral Tollmien- 
Schlichting wave to the imposed disturbance velocity should be about 1 .07ha, 
according to the present theory. This agrees with Shapiro's (1977) observation when 
ha, = a / c 2  is about one, which, as was shown above, is consistent with his static 
pressure measurements. 

5.3. Application to small humps 
We have already indicated that the present analysis also applies to small humps or 
protuberances on otherwise-smooth walls. A typical protuberance shape function 
is 

1 (-$<X<$), 
F ( X )  = I0 (1x1 > $). (5.3) 

t See footnote on p. 524. 
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Then it  follows from (3.26) that  

sin ikd 
k( in): .  

F ( k )  = - (5.4) 

Hence F and consequently the coupling coefficient (since A is independent of d, see 
(4.9)) will be a maximum, for fixed Tollmien-Schlichting wavenumber K ,  when Kd = n, 
i .e. when d equals half the Tollmien-Schlichting wavelength 2 x 1 ~ .  

Aizin & Polyakov (1979) conducted a relevant experiment, whose results are 
published as an internal Russian report but are described in considerable detail by 
Nishioka & Morkovin (1985) (who also point out its connection with the present work). 
Their experiment is similar to  Shapiro's (1977), but with the Tollmien-Schlichting 
wave generated by an upstream-propagating acoustic wave interacting with a thin 
Mylar strip affixed to the plate near the lower branch of the neutral-stability curve. 

Such a strip is certainly well described by the shape function (5.3), and Nishioka 
& Morkovin (1984) indicate that the most efficient coupling occurred when the width 
d of the strip was equal to half the Tollmien-Schlichting wavelength, in agreement 
with the present theory, and that the coupling coefficient was equal to  1.39 times 
that produced by their basic wavelength strip, which is close to the factor 4 2  
predicted by the present theory. 

Aizin & Polyakov appear to have defined their coupling coefficient as the 
magnitude of the TollmienSchlichting wave amplitude divided by the magnitude 
of the Stokes shear-wave amplitude at the end of the Mylar strip and at some 
unspecified transverse distance from the wall. This should not be too different from 
the ratio of the maximum Tollmien-Schlichting wave amplitude t o  the maximum 
Stokes shear-wave amplitude - the latter being about 1 . 1 5 ~ ~  (Ackerberg & Phillips, 
1972). Hence it follows from (4.9) and (5.4) that  the appropriate coupling coefficient 
is 

which increases linearly with the scaled hump height h. This linear dependence is, 
as pointed out by Nishioka & Morkovin, well corroborated by 
experiment. 

It follows from (2.2) and (2.3) that  (5.5) can be written as 

A2h*d* ( R,' ( ( R,* ):)sini~dl 
1.15 (in): 1.721 " b m  7 '  

the Aizin-Polyakov 

(5.6) 

where h* and d* denote the dimensional protuberance height and width respectively, 
= ov/VW is the frequency parameter and, as before, Ra8 denotes the displacement- 

thickness Reynolds number. 
The maximum coupling coefficient measured by Aizin & Polyakov was between 

0.0034 and 0.0047. It corresponded to an average h* of 0.0345 mm, R,* = 1550, 
p = 25.4 x 1 = 565 mm and d* = 12 mm, so that  K was nearly real and d K  = in 
in this case. Inserting these numbers into (5.6) and using figure 5,  we find that 
I A I x 1.05, and consequently that the maximum coupling coefficient should be about 
0.038, which is remarkably close to the observed value. Under the same conditions, 
but with an average h* of 0.0225 mm, the computed coupling coefficient is 0.025, 
which is also close to  the observed value of 0.025-O.028. It should be noted that Aizin 
& Polyakov made anequally good prediction basedonanunclear feedbackmodel, which 
appears to be completely unrelated to  the present mechanism. 
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Equation (5.6) indicates that the coupling coefficient should vanish when dK = 2 ~ ,  
as does the Aizin & Polyakov formula. For this case they measure a coupling 
coefficient of 0.006, which is close to the value they measured without the Mylar strip. 
They attribute this to the basic surface-geometry change at the junction between 
their nose and flat-plate regions, but it may also be due to the original leading-edge 
mechanism of Goldstein (1983 a )  and Goldstein et al. (1983). 

5.4. Extension to other disturbances 
Although the present work was, for definiteness, restricted to acoustic disturbances, 
it  applies equally well to any imposed disturbance whose spatial scale is large 
compared with the Tollmien-Schlichting wavelength (i.e. to the size of the triple 
deck). It is only necessary to reinterpret the free-stream fluctuation amplitude u,, 
which multiplies the entire dimensional unsteady solution, as the, possibly complex, 
amplitude of the inviscid velocity fluctuation just outside the triple-deck (or 
interaction) region. The final results ((4.9) and (4.10)) therefore apply to convected 
disturbances, which can be superposed to represent free-stream turbulence, and to 
sufficiently long-wavelength plate vibrations. The latter application would, of course, 
involve an auxiliary inviscid linear calculation to relate the streamwise velocity 
fluctuation u, to the prescribed plate displacement. 

Since the theory is linear, the results can be superposed to deal with various 
combinations of imposed disturbances. In this regard it is worth mentioning a recent 
experiment of Gedney (1983), who used Shapiro’s (1977) original apparatus with the 
acoustic speaker turned on and simultaneously vibrated the plate with a driving rod 
connected to its lower surface. The amplitude and phase of the plate vibration were 
adjusted until the speaker-generated Tollmien-Schlichting waves could no longer be 
detected. The implication of the present theory is that the net complex amplitude 
u, (of the acoustic and plate vibration induced inviscid disturbance just outside the 
triple deck) was caused to vanish. In other words, it was the source of the Tollmien- 
Schlichting wave itself that was actually eliminated in this experiment. 

5.5. Extension to higher frequencies and smaller humps? 
This paper is concerned with high-Reynolds-number Blasius boundary layers for 
which the frequency parameter /3 = SIR = SOe6 is proportional to R-t along the lower 
branch of the Tollmien-Schlichting wave neutral stability curve, and to R-2 along its 
upper branch. We have already indicated that these waves have wavelengths O(e3) 
and consequently exhibit the well known triple-deck structure in the region 
p = O(R-f) (i.e. in the region where So = O(1)) lying below and in the viscinity of the 
lower branch, but the Bodonyi & Smith (1981) analysis shows that they exhibit a 
four-layer structure in the much larger unstable region, /3 = O(R-f) ,  lying between 
these curves, because So % 1 and they have much shorter wavelengths = O ( e 3 / z / S O )  
there. 

While the present analysis was restricted to the former region and specific results 
were only given for the case where the mean flow is linearizable about the Blasius 
flow, it turns out trhat the final formula, actually its high-frequency limit (4.15), 
applies to the entire unstable (and much larger) region where /3 = O ( R f )  - even when 
the mean flow cannot be linearized. This occurs because (1) the additional layer of 
Tollmien-Schlichting-wave structure is actually contained in the lower part of the 
main deck to the order of approximation of the present analysis (Bodonyi & Smith, 

t Some of the material in this section is related to a recent study of Burggraf & Smith (1985). 
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1981), and (2) the resulting higher frequency Tollmien-Schlichting waves are now 
connected with a portion of the unsteady flow (i.e. the interactive portion associated 
with the upper deck motion) that depends only on the wall boundary conditions in 
the interaction region and not on the mean-flow variations produced by those 
conditions. 

The streamwise lengthscale of the wall displacement in the interaction region must 
of course approach zero along with the Tollmien-Schlichting wavelength, i.e. it must 
scale with e3/2/S0 as So + 00, if these waves are still to be generated by the interaction. 
Fortunately, the steady flow over humps of such short lengthscales has already been 
analysed by Smith, Brighton, Jackson & Hunt (1981) and by Smith & Daniels (1981). 
They show that this flow is still described (in a certain restricted sense) by the triple 
deck and that it will separate when the hump height exceeds O(@S$), which is the 
height where the mean-flow disturbance first becomes nonlinear in the viscinity of 
the hump. But (4.15) will apply even to much larger humps (of height = O(@)), which 
produce separation of the downstream flow, i t  we simply replace the scaled wall 
displacement F in the Fourier transform F by the scaled transverse position Fs of 
the separated streamline in the region of separated mean flow (since the separated 
streamline is too close to the wall to sustain any new instabilities). Of course I$, and 
consequently the result (4.15), will then depend on the mean flow, which was 
discussed in part by Smith & Daniels (1981) and which in general can only be 
determined from the full nonlinear and viscous-triple-deck solution. 

Its most interesting feature (from our point of view) is that the main portion of 
the lower deck becomes inviscid in the vicinity of the hump (i.e. where X = O(S-+)), 
with the viscous effects confined to a narrow wall layer in which the motion is 
governed by the boundary-layer equation with the pressure related to the streamwise 
velocity at infinity in the usual way. The streamwise velocity is equal to the scaled wall 
displacement hF when h 4 1 in our notation, as was pointed out by Smith & Daniels 
(1981), but is related to the latter in a much more complicated way that depends on 
the upstream vorticity distribution when h = O( 1). The preicse relation can be found 
from the solution of the inviscid boundary-layer equation, which is easily obtained 
in closed form. Finally, it is worth noting that the vorticity in the separated region 
is not necessarily equal to zero and that the growth rate of the Tollmien-Schlichting 
wave will be affected by the mean flow in this region. 

Since the form of the Fourier transform requires that F(2/hSo) be O(S,b) and h 
cannot exceed O(S;i) when the flow is unseparated, (4.15) implies that the coupling 
coefficient (between the Tollmien-Schlichting wave and the external disturbance) will 
be O(S;f)  when the flow is separated and O(S$) when it is not. 

Bodonyi & Smith, (1981) showed that So = O(M) near the upper branch of the 
neutral stability wave and it is easily shown that this scaling applies over most of 
the unstable region. It therefore follows that the coupling coefficient will be O(R*) 
there, when the flow is separated and O(R-h) when i t  is not. 

6. Concluding remarks 
The order-of-magnitude analysis of $5 suggests that Shapiro’s (1977) acoustic 

disturbance is coupled to the Tollmien-Schlichting waves via the small surface 
geometry variations in his experiment and not by the weak leading-edge coupling 
mechanism studied by Murdock (1980) and Goldstein (1983a). This does not, of 
course, mean that the latter mechanism will not be dominant in other experiments. 
In  any case, it seems to us that the relevant physics of both mechanisms can only 
be put into perspective by a mutual comparison of the type given in $5. 
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